Введение в эргодическую теории Лекция 3

А.А.Шананин

Определение

Абстрактной динамической системой называется $\{M, \Sigma, T, \mu\}$, где M фазовое пространство, Σ б- алгебра на M, $T: M \to M$ измеримое отображение, т.е. для любого множества $A \in \Sigma, T^{-1}(A) \in \Sigma,$ **Ш**инвариантная мера для Т, т.е. для любого множества $A \in \Sigma, \mu(T^{-1}(A)) = \mu(A)$.

Теорема Биркофа-Хинчина

Пусть $\left\{ M, \Sigma, T, \mu \right\}$ абстрактная динамическая система, $f\left(x\right) \in L_1\left(M, \mu\right)$. Тогда для почти всех (по мере μ) $x \in M$ существует предел

$$\lim_{n\to+\infty}\frac{1}{n}\sum_{j=0}^{n-1}f\left(T^{j}x\right)=f^{*}\left(x\right).$$

Теорема Биркгофа-Хинчина

Причем предельная функция $f^*(x)$ интегрируема и инвариантна, т.е.

$$f^*(Tx) = f^*(x)$$
 для почти всех (мере μ) $x \in M$. Если $\mu(M) < \infty$, то
$$\int f^*(x) \mu(dx) = \int f(x) \mu(dx)$$

$$\int_{M} f^{*}(x) \mu(dx) = \int_{M} f(x) \mu(dx).$$

Эргодичность

Пусть $\mu(M) = 1$.

Определение. Абстрактная динамическая система $\{M, \Sigma, T, \mu\}, \mu(M) = 1$ называется **эргодической**, если для любой функции $f(x) \in L_1(M, \mu)$ её временное среднее равно пространственному среднему, т.е.

$$f^*(x) = \lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} f(T^j x) = \int_M f(x) \mu(dx) = \overline{f}.$$

Критерии эргодичности

Пусть $\{M, \Sigma, T, \mu\}, \mu(M) = 1$ абстрактная динамическая система. Следующие утверждения эквивалентны:

- 1. система $\{M, \Sigma, T, \mu\}$ эргодическая;
- 2. если множество $A \in \Sigma$ инвариантно, т.е.

$$\mu\left(A \triangle T^{-1}A\right) = 0$$
, то $\mu\left(A\right) = 0$ или $\mu\left(A\right) = 1$;

3. если $f(x) \in L_1(M,\mu)$ инвариантная функция, т.е. f(Tx) = f(x) п.в. по мере μ , то f(x) = const п.в.

Критерии эргодичности

4. для любых $A \in \Sigma, B \in \Sigma$ справедливо, что

$$\lim_{n\to+\infty}\frac{1}{n}\sum_{j=0}^{n-1}\mu(T^{-j}A\cap B)=\mu(A)\mu(B);$$

5. для любых $f(x) \in L_2(M,\mu), g(x) \in L_2(M,\mu)$ справедливо, что

$$\lim_{n\to+\infty}\frac{1}{n}\sum_{j=0}^{n-1}\int_{M}f\left(T^{j}x\right)g\left(x\right)\mu(dx)=\int_{M}f\left(x\right)\mu(dx)\int_{M}g\left(x\right)\mu(dx).$$

Лемма 5

Если
$$\mu \left(A \triangle T^{-1} A \right) = 0, A \in \Sigma, \; \text{ то } \exists A_1 \in \Sigma : \mu \left(A \triangle A_1 \right) = 0, T^{-1} A_1 = A_1.$$
 Доказательство. Положим $B = \bigcap_{k=0}^{\infty} T^{-k} A$. Очевидно, что $\mu \left(A \triangle B \right) = 0, T^{-1} B \supset B, \mu \left(T^{-1} B \setminus B \right) = 0.$ Множество $A_1 = \bigcup_{k=0}^{\infty} T^{-k} B$ будет искомым. Действительно, $T^{-1} A_1 = \bigcup_{k=0}^{\infty} T^{-k} B = \bigcup_{k=0}^{\infty} T^{-k} B = A_1$, т.к. $T^{-1} B \supset B$.

Очевидно, что $\mu(A \triangle A_1) = 0$.

 $2 \Rightarrow 1$. Допустим противное, что $f^*(x) \neq \overline{f}$ п.в.

По теореме Биркгофа-Хинчина имеем, что $\int\limits_{M}f^{*}(x)\mu(dx)=\overline{f}.$

Значит, $f^*(x)$ не является постоянной, т.е.

$$\exists a : A_1 = \{x \in M | f^*(x) < a\}, A_2 = \{x \in M | f^*(x) \ge a\}, \mu(A_1) > 0, \mu(A_2) > 0.$$

Множества A_1 и A_2 инвариантны.

Противоречие с утверждением 2.

$$3\Rightarrow 2.$$
 Пусть $\mu \left(A \triangle T^{-1} A \right) = 0.$ В силу леммы 5 $\exists A_1 \in \Sigma : \mu \left(A \triangle A_1 \right) = 0, T^{-1} A_1 = A_1.$ Пусть $\chi_{A_1} \left(x \right) = egin{cases} 1, & \text{если } x \in A_1, \\ 0, & \text{если } x \notin A_1, \end{cases}$

В силу инвариантности A_1 получаем, что

$$\chi_{A_1}(Tx) = \chi_{T^{-1}A_1}(x) = \chi_{A_1}(x) \Rightarrow \chi_{A_1}^*(x) = \chi_{A_1}(x).$$

Из 3 следует, что $\chi_{A_1}^*(x) = \text{const.} \Rightarrow \mu(A_1) = 0$ или $\mu(A_1) = 1$.

 $1 \Rightarrow 3$ Если f(x) инвариантна относительно T , то п.в. (по мере) μ $f(Tx) = f(x) \Rightarrow f^*(x) = f(x)$. Из 1 следует, что $f^*(x) = \overline{f}$ п.в. по мере μ . Тогда $f(x) = \overline{f}$ п.в. по мере μ .

 $1 \Longrightarrow 4$. Из 1 следует, что $\chi_A^*(x) = \int_M \chi_A(x) \mu(dx) = \mu(A)$.

По теореме Биркгофа-Хинчина для п.в. по

wepe
$$\mu \lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} \chi_A (T^j x) \chi_B(x) = \chi_A^*(x) \chi_B(x).$$

По теореме Лебега о предельном переходе

$$\lim_{n\to+\infty} \int_{M} \left(\frac{1}{n} \sum_{j=0}^{n-1} \chi_{A} \left(T^{j} x \right) \chi_{B} \left(x \right) \right) \mu(dx) = \int_{M} \chi_{A}^{*} \left(x \right) \chi_{B} \left(x \right) \mu(dx) = \mu(A) \mu(B).$$

$$\text{N3} \int\limits_{M} \chi_{A} \Big(T^{j} x \Big) \chi_{B} \Big(x \Big) \mu \Big(dx \Big) = \int\limits_{M} \chi_{T^{-j} A} \Big(x \Big) \chi_{B} \Big(x \Big) \mu \Big(dx \Big) = \mu \Big(T^{-j} A \cap B \Big) \Longrightarrow 4.$$

 $4\Rightarrow 2$. Пусть $A\in \Sigma$ инвариантное множество относительно Т. По лемме $5\exists A_1\in \Sigma: \mu(A\triangle A_1)=0, T^{-1}A_1=A_1.$ Положим $B=M\setminus A_1.$ Тогда $\mu(T^{-j}A_1\cap B)=0$ j=0,1,... Из 4 получаем

$$0 = \lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} \mu \Big(T^{-j} A_1 \cap B \Big) = \mu \Big(A_1 \Big) \mu \Big(B \Big).$$

Откуда получаем, что $\mu(A_1) = 0$ или $\mu(B) = 0$.

Следовательно, $\mu(A) = 0$ или $\mu(A) = 1$.

 $5\Rightarrow 2.$ Пусть $A\in \Sigma$ инвариантное относительно Т множество. По лемме 5 $\exists A_{1}\in \Sigma: \mu\big(A_{\triangle}A_{1}\big)=0, T^{-1}A_{1}=A_{1}.$ Положим $f\left(x\right)=g\left(x\right)=\chi_{A_{1}}\left(x\right).$ Тогда $f\left(T^{j}x\right)g\left(x\right)=\chi_{A_{1}}\left(x\right).$

Откуда в силу 5 получаем, что $\mu(A_1) = (\mu(A_1))^2$.

Следовательно, $\mu(A_1)=0$ или $\mu(A_1)=1$, а, значит, $\mu(A)=0$ или $\mu(A)=1$.

 $1 \Rightarrow 5$. По статистической эргодической теореме Дж. Фон Неймана последовательность

$$\left\{ \frac{1}{n} \sum_{j=0}^{n-1} f(T^{j}x) \middle| n = 1, 2, \dots \right\}$$

сходится в $L_2(M,\mu)$ к функции $f^*(x)$. Из 1 имеем $f^*(x) = \int_M f(x) \mu(dx)$ п.в. по мере μ . По неравенству Коши-Буняковского

$$\left| \int_{M} \left(\frac{1}{n} \sum_{j=0}^{n-1} f(T^{j}x) - f^{*}(x) \right) g(x) \mu(dx) \right| \leq \left\| \frac{1}{n} \sum_{j=0}^{n-1} f(T^{j}x) - f^{*}(x) \right\|_{L_{2}(M,\mu)} \left\| g(x) \right\|_{L_{2}(M,\mu)}.$$

Откуда следует, что

$$\lim_{n\to+\infty}\frac{1}{n}\sum_{j=0}^{n-1}\int_{M}f(T^{j}x)g(x)\mu(dx)=\int_{M}f(x)\mu(dx)\int_{M}g(x)\mu(dx).$$

Теорема о всюду плотных траекториях

Пусть $\{M, \Sigma, T, \mu\}, \mu(M) = 1$, эргодическая абстрактная динамическая система, М топологическое пространство со счётной базой, причём каждое непустое открытое множество имеет положительную меру, Т автоморфизм. Тогда для п.в. (по мере μ) $x \in M$ траектория $\left\{T^jx \middle| j\!\in\!Z\right\}$ всюду плотна.

Траектория $\{T^jx|j\in Z\}$ не плотна тогда и только тогда, когда существует непустое открытое множество G из базы топологии, такое, что $x \in \bigcap^{+\infty} \left(M \setminus T^{-j}G \right)$. Множество $A_G = \bigcap^{+\infty} \left(M \setminus T^{-j}G \right)$ является инвариантным $T^{-1}A_G = A_G$. Тогда $A_G \cap G = \emptyset, \mu(G) > 0 \Longrightarrow \mu(A_G) < 1 \Longrightarrow \mu(A_G) = 0.$ В силу счётности базы имеем $\mu \left(\bigcup_G A_G\right) = 0.$

Top

Тор размерности п определяется как R^n/Z^n , представляется декартовым произведением п окружностей $\left\{\left(e^{2\pi i x_1},...,e^{2\pi i x_n}\right)\middle|x_j\in[0,1],j=1,...,n\right\}$. Каноническая проекция

$$\Psi: \mathbb{R}^n \to \mathbb{R}^n / \mathbb{Z}^n$$
, $\Psi(x_1, ..., x_n) = (e^{2\pi i x_1}, ..., e^{2\pi i x_n})$. Пусть $X = (e^{2\pi i x_1}, ..., e^{2\pi i x_n})$ и $Y = (e^{2\pi i y_1}, ..., e^{2\pi i y_n})$

Определим расстояние между Х и Ү как

$$\rho(X,Y) = \inf_{w_1 \in Z, ..., w_n \in Z} \left(\sum_{j=1}^{n} (x_j - y_j + w_j)^2 \right)^{\frac{1}{2}}.$$

Динамическая система «Сдвиг на торе $\left\{R^n/Z^n,\Lambda,T_g,\lambda\right\}$ »

Сдвиг на вектор $g = (g_1,...,g_n)$ определяется Отображением $\Theta_g : R^n \to R^n, \Theta_g (x_1,...,x_n) = (x_1 + g_1,...,x_n + g_n).$ Корректно определено отображение

$$T_{g} = \Psi \circ \Theta_{g} \circ \Psi^{-1} : R^{n}/Z^{n} \to R^{n}/Z^{n}, T_{g}\left(e^{2\pi i x_{1}}, ..., e^{2\pi i x_{n}}\right) = \left(e^{2\pi i (x_{1}+g_{1})}, ..., e^{2\pi i (x_{n}+g_{n})}\right),$$

кроме того, $\rho(T_gX,T_gY)=\rho(X,Y)$. Мера Лебега на R^{2n} индуцирует б — алгебру измеримых множеств Λ и инвариантную относительно T_g меру λ .

О всюду плотных траекториях

Пусть $\left\{R^n/Z^n,\Lambda,T_g,\lambda\right\}$ динамическая система сдвиг на торе. Если $\exists \tilde{X} \in R^n/Z^n$ такая, что траектория $\left\{T_g^j \tilde{X} \middle| j \in Z\right\}$ всюду плотна в $\left\{R^n/Z^n, T_g^j X \middle| j \in Z\right\}$ всюду плотна в $\left\{T_g^j X \middle| j \in Z\right\}$ всюду плотна в $\left\{R^n/Z^n, T_g^j X \middle| j \in Z\right\}$ всюду плотна в $\left\{R^n/Z^n, T_g^j X \middle| j \in Z\right\}$ всюду

Выберем произвольное $\varepsilon > 0$. Поскольку R^n/Z^n компакт и множество $\left\{T_{g}^{j}\tilde{X}\middle|j\in Z\right\}$ всюду плотно в R^n/Z^n , $\exists N>0$ такое, что $\left\{T_g^j \tilde{X} \middle| j \in Z, \middle| j \middle| \leq N \right\}$ образует ε - сеть в R^n/Z^n . Следовательно, $\exists j_0 \in Z : \left| j_0 \right| \leq N, \rho \left(T_g^{j_0} \tilde{X}, X \right) < \epsilon.$ Выберем $\forall W \in \mathbb{R}^n/\mathbb{Z}^n$. Отметим, что $\rho\left(W,T_{g}^{k}X\right) \leq \rho\left(W,T_{g}^{k+j_{0}}\tilde{X}\right) + \rho\left(T_{g}^{k+j_{0}}\tilde{X},T_{g}^{k}X\right) =$

 $= \rho \Big(W, T_g^{k+j_0} \tilde{X} \Big) + \rho \Big(T_g^{j_0} \tilde{X}, X \Big) \leq \rho \Big(W, T_g^{k+j_0} \tilde{X} \Big) + \epsilon$

Поскольку множество $\left\{T_g^j \tilde{X} \middle| j \in Z, |j| \leq N \right\}$ всюду плотно в R^n / Z^n , то $\exists k \in Z \colon |k+j_0| \leq N, \rho \left(W, T_g^{k+j_0} \tilde{X} \right) < \epsilon$. Заметим, что $\rho \left(W, T_g^k \tilde{X} \right) < 2\epsilon, |k| \leq 2N$. Следовательно, $\left\{T_g^j X \middle| j \in Z, |j| \leq 2N \right\}$ образует 2ϵ - сеть в R^n / Z^n . Потому траектория $\left\{T_g^j X \middle| j \in Z \right\}$, всюду плотна в R^n / Z^n .

Теорема Вейля- фон Неймана

Для того, чтобы сдвиг на торе $\{R^n/Z^n, \Lambda, T_g, \lambda\}$, где $g=(g_1,...,g_n)$, был эргодической системой необходимо и достаточно, чтобы числа $g_1,...,g_n,1$ были рационально независимыми, т.е. $r_1g_1+...+r_ng_n=r_0,r_0\in Z,...,r_n\in Z\Rightarrow r_0=r_1=...=r_n=0$.

Достаточность. Пусть $f(T_gx)=f(x)$ п.в. Достаточно доказать, что f(x)=const п.в. Без ограничения общности можно считать, что $f(x) \in L_{\infty}(R^n/Z^n)$. Действительно, в противном случае рассмотрим

$$f_{N}(x) = \begin{cases} f(x), ecnu|f(x)| \le N, \\ 0, ecnu|f(x)| > N, \end{cases}$$

Покажем, что $f_N(x) = const$ п.в. и перейдем $N \to +\infty$.

Разложим
$$f(x) \in L_{\infty}(R^n/Z^n) \subset L_2(R^n/Z^n)$$
 в

сходящийся в $L_2(R^n/Z^n)$ ряд Фурье

$$f\left(x\right) = \sum_{r \in Z^n} c_r e^{2\pi i (r,x)}, \ \text{где} \ c_r = \int\limits_0^1 ... \int\limits_0^1 f\left(x\right) e^{-2\pi i (r,x)} dx_1 ... dx_n.$$
 Тогда
$$f\left(T_g x\right) = \sum_r c_r e^{2\pi i (r,x+g)} = \sum_r c_r e^{2\pi i (r,x+g)} e^{2\pi i (r,g)} e^{2\pi i (r,x)}.$$

Поскольку $f(T_g x) = f(x)$, $\forall r \in Z^n \ c_r e^{2\pi i(r,g)} = c_r$.

Заметим, что

$$e^{2\pi i \left(r,g\right)} \neq 1 \ \text{при } r \in Z^n \setminus \left\{0\right\} \Longrightarrow c_r = 0 \text{при } r \in Z^n \setminus \left\{0\right\} \Longrightarrow f\left(x\right) = c_0.$$

Необходимость. Допустим противное, что

$$\exists r \in Z^n : (r,g) \in Z.$$

Тогда функция $f(x) = e^{2\pi i(r,x)}$ является инвариантной, т.к.

$$f(T_g x) = e^{2\pi i(r,x+g)} = e^{2\pi i(r,g)} e^{2\pi i(r,x)} = e^{2\pi i(r,x)} = f(x).$$

Следовательно, $\left\{R^{n}/Z^{n},\Lambda,T_{g},\lambda\right\}$ не эргодическая.

Следствие (Кронекер - Вейль)

Пусть числа $g_1,...,g_n,1$ рационально независимы. Тогда

$$\forall \varepsilon > 0 \forall X = (x_1, ..., x_n) \in \mathbb{R}^n \exists t \in \mathbb{Z}, k_1 \in \mathbb{Z}, ..., k_n \in \mathbb{Z} : |x_j - tg_j - k_j| < \varepsilon \ j = 1, ..., n.$$

Доказательство. Сдвиг на торе $\{R^n/Z^n, \Lambda, T_g, \lambda\}$ является эргодическим в условиях теоремы.

Следовательно, траектория $\left\{T_g^j0\middle|j\in Z\right\}$ всюду

плотна
$$\Rightarrow \forall \epsilon > 0 \exists t \in Z : \rho \left(\Psi X, T_g^t 0 \right) < \epsilon.$$

Сдвиги на окружности

Определение. Будем говорить, что последовательность точек $\{x_j | j=1,2,...\}$ равномерно распределена на окружности S, если для любой дуги $\Delta \subseteq S$

$$\lim_{n\to+\infty}\frac{1}{n}\sum_{j=1}^n\chi_{\Delta}(x_j)=\lambda(\Delta).$$

Лемма 6.

Для того, чтобы последовательность точек $\{x_j|j=1,2,...\}$ была равномерно распределена на окружности S достаточно, чтобы

$$\forall f(x) \in C(S) \lim_{n \to +\infty} \frac{1}{n} \sum_{j=1}^{n} f(x_j) = \int_{S} f(x) dx.$$

Пусть Δ произвольная дуга на S.

Зафиксируем ε>0. Выберем такие функции

$$f^{+}(x) \in C(S), f^{-}(x) \in C(S)$$
 такие, что
$$1. \forall x \in S \ f^{-}(x) \leq \chi_{\Delta}(x) \leq f^{+}(x);$$

$$2. \int_{S} (f^{+}(x) - f^{-}(x)) dx < \varepsilon.$$

Тогда

$$\frac{1}{n} \sum_{j=1}^{n} f^{-}(x_{j}) \leq \frac{1}{n} \sum_{j=1}^{n} \chi_{\Delta}(x_{j}) \leq \frac{1}{n} \sum_{j=1}^{n} f^{+}(x_{j}).$$

Переходя к пределу при $n \to +\infty$, получаем, что

$$\lambda(\Delta) - \varepsilon \leq \underline{\lim}_{n \to +\infty} \frac{1}{n} \sum_{j=1}^{n} \chi_{\Delta}(x_{j}) \leq \overline{\lim}_{n \to +\infty} \frac{1}{n} \sum_{j=1}^{n} \chi_{\Delta}(x_{j}) \leq \lambda(\Delta) + \varepsilon.$$

В силу произвольности $\varepsilon > 0$ получаем, что

$$\exists \lim_{n\to+\infty}\frac{1}{n}\sum_{j=1}^n\chi_{\Delta}\left(x_j\right)=\lambda(\Delta).$$

Теорема Боля-Серпинского-Вейля

Пусть g иррациональное число. Тогда для любого $x_0 \in S$ последовательность $\{x_0 + kg | k = 0,1,...\}$ равномерно распределена на окружности S. Доказательство. Достаточно доказать, что $\forall f(x) \in C(S), \forall x_0 \in S$ $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f(x_0 + kg) = \int_S f(x) dx$. (1) В силу эргодичности (1) выполнено для п.в. $x_0 \in S$.

Покажем, что если (1) выполнено хотя бы для одной точки $x_0 \in S$, то (1) выполнено для любой точки $x \in S$. Зафиксируем $\varepsilon > 0$. Непрерывная функция f(x) равномерно непрерывна на компакте S. Следовательно,

$$\exists \delta > 0 : \forall x \in S, \forall y \in S \ \left| x - y \right| < \delta \Rightarrow \left| f\left(x\right) - f\left(y\right) \right| < \frac{\varepsilon}{3}.$$
 Kpome toro,
$$\max_{x \in S} \left| f\left(x\right) \right| = M < +\infty.$$

Так как траектория $\{x_0 + kg | k \in Z\}$ всюду плотна на S, $\exists m \in Z : |x - x_0 - mg| < \delta$.

Тогда

$$\begin{split} &\left| \frac{1}{n} \sum_{k=0}^{n-1} f\left(x + kg\right) - \frac{1}{n+m} \sum_{k=0}^{n+m-1} f\left(x_0 + kg\right) \right| \leq \left| \frac{1}{n} \sum_{k=0}^{n-1} \left(f\left(x + kg\right) - f\left(x_0 + \left(k + m\right)g\right) \right) \right| + \\ &+ \frac{\left| m \right|}{\left| n + m \right|} \max_{x \in S} \left| f\left(x\right) \right| + \frac{\left| m \right|}{\left| n + m \right| n} \sum_{k=m}^{n+m-1} \left| f\left(x_0 + kg\right) \right| \end{split}$$

Существует $\hat{\mathbf{n}} > 0$ такое, что $\mathbf{n} \ge \hat{\mathbf{n}} \Rightarrow \frac{|\mathbf{m}|}{|\mathbf{n} + \mathbf{m}|} \mathbf{M} < \frac{\varepsilon}{3}$.

Откуда получаем, что при $n \geq \hat{n}$ имеем

$$\left| \frac{1}{n} \sum_{k=0}^{n-1} f(x+kg) - \frac{1}{n+m} \sum_{k=0}^{n+m-1} f(x_0+kg) \right| < \varepsilon.$$

Поскольку

$$\lim_{n\to+\infty}\frac{1}{n+m}\sum_{k=0}^{n+m-1}f(x_0+kg)=\int_S f(x)dx,$$

Получаем в силу произвольности ε>0, что

$$\lim_{n\to+\infty}\frac{1}{n}\sum_{k=0}^{n-1}f(x+kg)=\int_{S}f(x)dx.$$

Следствие

Поворот окружности на иррациональный угол имеет единственную вероятностную борелевскую меру.

Доказательство. Пусть μ инвариантная вероятностная борелевская мера. Мера μ однозначно определяется линейным функционалом на C(S) $\int_{s}^{f}(x)\mu(dx)\,\mathrm{для}\,\,f(x)\in C(S)$.

По теореме Биркгофа-Хинчина с учетом эргодичности для п.в. (по мере μ) х∈Ѕ имеем

$$\lim_{n\to+\infty}\frac{1}{n}\sum_{k=0}^{n-1}f\left(x+kg\right)=\int_{S}f\left(x\right)\mu(dx).$$

По теореме Боля-Серпинского-Вейля имеем

$$\forall x \in S \quad \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f(x+kg) = \int_{S} f(x) dx.$$

Откуда следует, что

$$\forall f(x) \in C(S) \int_{S} f(x)\mu(dx) = \int_{S} f(x)dx \Rightarrow \mu(dx) = dx.$$

Строгая эргодичность

Определение. Абстрактная динамическая система $\{M, \Sigma, T, \mu\}, \mu(M) = 1$ называется строго эргодической, если она имеет единственную инвариантную вероятностную меру. P.S. Из строгой эргодичности следует Эргодичность.

Пример: распределение первых цифр в десятичной записи 2ⁿ

2,4,8,1,3,6, ...

Число в десятичной записи имеет вид

$$2^n = k_0 10^r + k_1 10^{r-1} + ...,$$
 где $0 < k_0 \le 9; 0 \le k_1 \le 9;$

$$\Rightarrow k_0 10^r \le 2^n < (k_0 + 1)10^r \Rightarrow r + \lg k_0 \le n \lg 2 < r + \lg (k_0 + 1),$$

$$\Rightarrow \lg k_0 \le \{n \lg 2\} < \lg (k_0 + 1).$$

Число $\lg 2 = \log_{10} 2$ иррациональное. Обозначим

$$\Delta_{k} = [\log_{10} k, \log_{10} (k+1)), k = 1, ..., 9.$$

$$\lim_{n\to+\infty}\frac{1}{n}\sum_{j=0}^{n-1}\chi_{\Delta_k}\left(\left\{j\log_{10}2\right\}\right)=\lambda\left(\Delta_k\right)=\log_{10}\left(1+\frac{1}{k}\right).$$

Эргодичность динамической системы в непрерывном времени

Определение. Абстрактная динамическая система в непрерывном времени $\left\{M, \Sigma, T^t, \mu\right\}$ называется эргодической, если $\forall f\left(x\right) \in L_1(M, \mu)$ для п.в. (по мере μ) $x \in M$ справедливо, что

$$f^*(x) = \lim_{N \to +\infty} \frac{1}{N} \int_{0}^{N} f(T^t x) dt = \int_{M} f(x) \mu(dx).$$

Пример

Динамическая система сдвиг на торе в непрерывном времени $\left\{R^n\big/Z^n,\Lambda,T_g^t,\lambda\right\},g=\left(g_1,...,g_n\right)\in R^n,$ где

$$\begin{split} &T_g^t = \Psi \Xi_g^t \Psi^{-1} : R^n / Z^n \to R^n / Z^n \,, \\ &\Xi_g^t \left(x_1, ..., x_n \right) = \left(x_1 + t g_1, ..., x_n + t g_n \right), \\ &T_g^t \left(e^{2\pi i x_1}, ..., e^{2\pi i x_n} \right) = \left(e^{2\pi i \left(x_1 + t g_1 \right)}, ..., e^{2\pi i \left(x_n + t g_n \right)} \right). \end{split}$$

Теорема

Динамическая система сдвиг на торе $\{R^n/Z^n, \Lambda, T_g^t, \lambda\}$ является эргодической тогда и только тогда, когда числа $g_1, ..., g_n$ рационально независимы, т.е.

$$r_1g_1 + r_2g_2 + ... + r_ng_n = 0 \Rightarrow r_1 = r_2... = r_n = 0.$$

Достаточность. Функция $f^*(x) \in L_1(R^n/Z^n)$ и п.в. (по мере μ) $f^*(T_g^t x) = f^*(x)$. Без ограничения общности можно считать, что $f^*(x) \in L_\infty(R^n/Z^n)$. Разложим функцию $f^*(x)$ в ряд Фурье сходящийся в $L_2(R^n/Z^n)$

$$f^*(x) = \sum_{r \in Z^n} c_r e^{2\pi i(r,x)}$$
, где $c_r = \int_0^1 ... \int_0^1 f^*(x) e^{-2\pi i(r,x)} dx_1 ... dx_n$.

Тогда

$$f^* \Big(T_g^t x \Big) = \sum_{r \in Z^n} c_r e^{2\pi i (r,x+tg)} = \sum_{r \in Z^n} c_r e^{2\pi i t (r,g)} e^{2\pi i (r,x)} \Longrightarrow \forall r \in Z^n \forall t \geq 0 \ c_r = c_r e^{2\pi i t (r,g)}.$$

Следовательно, $c_r = 0$ при $r \in Z^n \setminus \{0\} \Rightarrow f^*(x) = c_0$ п.в.

Из

$$\int_{R^{n}/Z^{n}} f^{*}(x) dx = \int_{R^{n}/Z^{n}} f(x) dx$$

получаем, что

$$f^*(x) = \int_{\mathbb{R}^n/\mathbb{Z}^n} f(x) dx.$$

Необходимость. Допустим противное, что

$$r_1g_1 + ... + r_ng_n = 0, r = (r_1, ..., r_n) \in \mathbb{Z}^n \setminus \{0\}.$$

Положим $\tilde{f}(x) = e^{2\pi i(r,x)}$. Тогда

$$\tilde{f}^*(x) = \tilde{f}(x), \int_{\mathbb{R}^n/\mathbb{Z}^n} \tilde{f}(x) dx = 0 \Rightarrow \tilde{f}^*(x) \neq \int_{\mathbb{R}^n/\mathbb{Z}^n} \tilde{f}(x) dx.$$

Динамическая система не является эргодической.

Пусть
$$z(t) = \sum_{j=1}^{n} a_{j} e^{2\pi i g_{j}t} \neq 0, a_{j} = \left|a_{j}\right| e^{2\pi i \psi_{j}} \in C, g_{j} \in R, j = 1,...,n.$$
 Предположим, что $g_{1},...,g_{n}$ рационально независимы. Справедливо представление $z(t) = r(t) e^{2\pi i \phi(t)}.$

Вопрос Лагранжа: существует ли предел

$$\omega = \lim_{t \to +\infty} \frac{\varphi(t)}{t}?$$

Заметим, что

$$\varphi(t) = \operatorname{Re} \frac{1}{2\pi i} \operatorname{Ln} z(t).$$

Тогда

$$\frac{d\phi}{dt} = Re\left(\frac{1}{2\pi i z(t)} \frac{dz(t)}{dt}\right) = Re\left(\frac{\sum_{j=1}^{n} g_{j} a_{j} e^{2\pi i g_{j} t}}{\sum_{j=1}^{n} a_{j} e^{2\pi i g_{j} t}}\right) = Re\left(\frac{\sum_{j=1}^{n} g_{j} |a_{j}| e^{2\pi i (g_{j} t + \psi_{j})}}{\sum_{j=1}^{n} |a_{j}| e^{2\pi i (g_{j} t + \psi_{j})}}\right).$$

Рассмотрим функцию на R^n/Z^n

$$f\left(\psi_{1},...,\psi_{n}\right) = Re \left(\frac{\sum_{j=1}^{n} g_{j} \left|a_{j}\right| e^{2\pi i \psi_{j}}}{\sum_{j=1}^{n} \left|a_{j}\right| e^{2\pi i \psi_{j}}}\right).$$

Тогда

$$\frac{d\phi(t)}{dt} = f\left(\psi_1 + g_1 t, ..., \psi_n + g_n t\right) \Rightarrow \phi(t_2) - \phi(t_1) = \int_{t_1}^{t_2} f\left(\psi_1 + g_1 \tau, ..., \psi_n + g_n \tau\right) d\tau.$$

Следовательно,

$$\lim_{t\to+\infty}\frac{\varphi(t)}{t}=\lim_{t\to+\infty}\frac{1}{t}\int_{0}^{t}f\left(\psi_{1}+g_{1}\tau,...,\psi_{n}+g_{n}\tau\right)d\tau.$$

Сдвиг на торе $T_{\rm g}$ эргодическая система

$$\Rightarrow \lim_{t \to +\infty} \frac{\varphi(t)}{t} = \int_{0}^{1} ... \int_{0}^{1} f(\psi_{1}, ..., \psi_{n}) d\psi_{1} ... d\psi_{n} =$$

$$= \operatorname{Re} \int_{0}^{1} ... \int_{0}^{1} \left(\frac{\sum_{j=1}^{n} g_{j} |a_{j}| e^{2\pi i \psi_{j}}}{\sum_{j=1}^{n} |a_{j}| e^{2\pi i \psi_{j}}} \right) d\psi_{1} ... d\psi_{n} = \sum_{j=1}^{n} g_{j} W_{j}.$$

3десь

$$\begin{split} W_k &= Re \int\limits_0^1 ... \int\limits_0^1 \left(\frac{\left| a_k \right| e^{2\pi i \psi_k}}{\sum\limits_{j=1}^n \left| a_j \right| e^{2\pi i \psi_j}} \right) d\psi_1 ... d\psi_n = \\ &= Re \int\limits_0^1 ... \int\limits_0^1 \left(\int\limits_0^1 \left(\frac{\left| a_k \right| e^{2\pi i \psi_k}}{\left| a_k \right| e^{2\pi i \psi_k} + \sum\limits_{j \neq k} \left| a_j \right| e^{2\pi i \psi_j}} \right) d\psi_k \right) d\psi_1 ... d\psi_{k-1} d\psi_{k+1} ... d\psi_n. \end{split}$$

Заметим, что

$$\begin{split} &\int\limits_{0}^{1} \left(\frac{\left| a_{k} \right| e^{2\pi i \psi_{k}}}{\left| a_{k} \right| e^{2\pi i \psi_{k}}} + \sum\limits_{j \neq k} \left| a_{j} \right| e^{2\pi i \psi_{j}}} \right) d\psi_{k} = \frac{1}{2\pi i} \oint\limits_{|z_{k}| = \left| a_{k} \right|} \frac{dz_{k}}{z_{k} + \sum\limits_{j \neq k} \left| a_{j} \right| e^{2\pi i \psi_{j}}} = \\ &= \begin{cases} 1, e \text{сли} \left| \sum\limits_{j \neq k} \left| a_{j} \right| e^{2\pi i \psi_{j}} \right| < \left| a_{k} \right|, \\ 0, e \text{сли} \left| \sum\limits_{j \neq k} \left| a_{j} \right| e^{2\pi i \psi_{j}} \right| > \left| a_{k} \right|. \end{cases} \\ &\text{Следовательно,} \quad W_{k} = P \left\{ \left(\psi_{1}, ..., \psi_{k-1}, \psi_{k+1}, ..., \psi_{n} \right) \left| \left| \sum\limits_{j \neq k} \left| a_{j} \right| e^{2\pi i \psi_{j}} \right| < \left| a_{k} \right| \right\}. \end{split}$$

Перемешивание

Определение. Абстрактная динамическая система $\{M, \Sigma, T, \mu\}, \mu(M) = 1$ является системой с перемешиванием, если

$$\forall A \in \Sigma, \forall B \in \Sigma \lim_{j \to +\infty} \mu \Big(T^{-j} A \cap B \Big) = \mu \Big(A \Big) \mu \Big(B \Big).$$

Р.S. Система $\{M, \Sigma, T, \mu\}, \mu(M) = 1$ эргодическая, если $\forall A \in \Sigma, \forall B \in \Sigma$ $\lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} \mu(T^{-j}A \cap B) = \mu(A)\mu(B).$

Связь перемешивания с эргодичностью

Динамическая система с перемешиванием является эргодической.

Доказательство. Пусть $A \in \Sigma, T^{-1}A = A, B = M \setminus A.$ Тогда

$$T^{-j}A \cap B = \emptyset, j = 0, 1, ... \Rightarrow \mu(T^{-j}A \cap B) = 0 \Rightarrow \mu(A)\mu(B) = 0.$$

Следовательно, $\mu(A) = 0$ или $\mu(A) = 1$.

Пример «сдвиг на торе»

Сдвиг на торе не является перемешиванием. Доказательство. Если $g_1,...,g_n,1$ не являются рационально независимыми, то сдвиг на торе $\{R^n/Z^n,\Lambda,T_g,\lambda\}$ по теореме Вейля-фон Неймана не является эргодическим и, значит, не является перемешиванием. Предположим, теперь, что $g_1,...,g_n,1$ рационально независимы.

Пример «сдвиг на торе»

Выберем $f(x) = e^{2\pi i(r,x)}, g(x) = e^{-2\pi i(r,x)}, r \in Z^n \setminus \{0\}.$ Тогда

$$\begin{split} &\int\limits_{R^n/Z^n} f\left(x\right) dx_1...dx_n = 0, \int\limits_{R^n/Z^n} g\left(x\right) dx_1...dx_n = 0, \\ &\int\limits_{R^n/Z^n} f\left(T_g^m x\right) g\left(x\right) dx_1...dx_n = e^{2\pi i m(r,g)}, \\ &\lim\limits_{m \to +\infty} \int\limits_{R^n/Z^n} f\left(T_g^m x\right) g\left(x\right) dx_1...dx_n \neq 0. \end{split}$$

Критерий перемешивания

Определение. Совокупность измеримых множеств $\Upsilon \subseteq \Sigma$ называется плотной, если

 $\forall A \in \Sigma, \forall \epsilon > 0 \; \exists A^* \in \Upsilon : \mu \Big(A \triangle A^* \Big) < \epsilon.$ Совокупность измеримых множеств $\Gamma \subseteq \Sigma$ называется достаточной, если конечные объединения непересекающихся элементов из Γ образуют плотную систему.

Критерий перемешивания

Пусть $\{M, \Sigma, T, \mu\}$, $\mu(M) = 1$ абстрактная динамическая система и $\Gamma \subseteq \Sigma$ достаточная совокупность измеримых множеств. Если $\forall A \in \Gamma, \forall B \in \Gamma \lim_{j \to +\infty} \mu \big(T^{-j} A \cap B \big) = \mu(A) \mu(B),$ то $\{M, \Sigma, T, \mu\}$ динамическая система с перемешиванием.

Пусть
$$A_1\in \Gamma,...,A_k\in \Gamma,B_1\in \Gamma,...,B_m\in \Gamma,$$

$$A_i\cap A_j=\varnothing,B_i\cap B_j=\varnothing \ \ \text{для }i\neq j,$$

$$A'=\bigcup_{i=1}^kA_i,B'=\bigcup_{j=1}^mB_j.$$

Тогда

$$\mu(A') = \sum_{i=1}^k \mu(A_i), \mu(B') = \sum_{j=1}^m \mu(B_j), \mu(T^{-n}A' \cap B') = \sum_{i=1}^k \sum_{j=1}^m \mu(T^{-n}A_i \cap B_j).$$

По условию

$$\lim \mu (T^{-n}A_i \cap B_j) = \mu (A_i) \mu (B_j), i = 1,...,k; j = 1,...,m.$$

Следовательно, $\forall A' \in \Upsilon, \forall B' \in \Upsilon \lim \mu (T^{-n}A' \cap B') = \mu(A')\mu(B'),$ где Т плотная совокупность измеримых множеств. Пусть теперь $\forall A \in \Sigma, \forall B \in \Sigma, \forall \varepsilon > 0$. Найдем $A' \in \Upsilon, B' \in \Upsilon : \mu(A \triangle A') < \frac{\epsilon}{4}, \mu(B \triangle B') < \frac{\epsilon}{4}.$ Тогда $\left|\mu\left(T^{-n}A\cap B\right)-\mu\left(A\right)\mu\left(B\right)\right|\leq\mu\left(T^{-n}\left(A\triangle A'\right)\right)+\mu\left(T^{-n}A'\cap\left(B\triangle B'\right)\right)+$ $+ \left|\mu \left(T^{-n}A' \cap B'\right) - \mu \left(A'\right)\mu \left(B'\right)\right| + \mu \left(A\right)\mu \left(B \triangle B'\right) + \mu \left(B'\right)\mu \left(A \triangle A'\right) \leq$ $\leq \left| \mu \left(T^{-n} A' \cap B' \right) - \mu \left(A' \right) \mu \left(B' \right) \right| + \varepsilon.$

Символическая динамика

Обозначим

$$\Omega_{N} = \left\{ \omega = \left(..., \omega_{-1}, \omega_{0}, \omega_{1}, ...\right) \middle| \omega_{i} \in \left\{0, 1, ..., N-1\right\} \right\}$$
 для $i \in Z \right\}$

фазовое пространство. Пусть

$$n_1 < n_2 < ... < n_k, \alpha_1, ..., \alpha_k \in \{0, 1, ..., N-1\}.$$

Цилиндром k-го порядка называется

множество
$$C^{n_1,\ldots,n_k}_{\alpha_1,\ldots,\alpha_k} = \left\{\omega \in \Omega_N \left| \omega_{n_i} = \alpha_i \right. \right. \right.$$
для $i=1,\ldots,k \right\}.$

Обозначим ∏ наименьшую б - алгебру, содержащую все цилиндры.

Символическая динамика

Определим отображение сдвига

$$\sigma_{N}: \Omega_{N} \to \Omega_{N}, \sigma_{N}(\omega) = \omega', \forall n \in Z \ \omega'_{n} = \omega_{n+1},$$

$$\omega = (..., \omega_{-1}, \omega_{0}, \omega_{1}, ...), \omega' = (..., \omega'_{-1}, \omega'_{0}, \omega'_{1}, ...).$$

Мера μ инвариантна, если для любого

цилиндра $C_{\alpha_1,...,\alpha_k}^{n_1,...,n_k}$ справедливо, что

$$\mu\left(\sigma_N^{-1}\left(C_{\alpha_1,\ldots,\alpha_k}^{n_1,\ldots,n_k}\right)\right) = \mu\left(C_{\alpha_1,\ldots,\alpha_k}^{n_1,\ldots,n_k}\right).$$

Символическая динамическая система

$$\{\Omega_{N}, \Pi, \sigma_{N}, \mu\}, \mu(\Omega_{N}) = 1.$$

Сдвиг Бернулли $B(p_0,...,p_{N-1})$

Пусть
$$p_0 > 0, ..., p_{N-1} > 0, \sum_{j=0}^{N-1} p_j = 1.$$

Если для любого цилиндра $C^{n_1,\dots,n_k}_{lpha_1,\dots,lpha_k}$ выполнятся

 $\mu\left(C_{\alpha_{1},...,\alpha_{k}}^{n_{1},...,n_{k}}\right) = p_{\alpha_{1}}...p_{\alpha_{k}},$ то символическая система

 $\{\Omega_{_{\rm N}},\Pi,\sigma_{_{\rm N}},\mu\},\mu(\Omega_{_{\rm N}})$ =1 Называется сдвигом

Бернулли $B(p_0,...,p_{N-1})$.

Предложение. Сдвиг Бернулли $B(p_0,...,p_{N-1})$ является перемешиванием.

Рассмотрим два произвольных цилиндра

$$C_{\alpha_1,...,\alpha_k}^{n_1,...,n_k}, C_{\beta_1,...,\beta_t}^{m_1,...,m_t}$$
.

Заметим, что для достаточно больших ј>0

$$\sigma_N^{-j}\!\left(C_{\alpha_1,\ldots,\alpha_k}^{n_1,\ldots,n_k}\right)\!=\!C_{\alpha_1,\ldots,\alpha_k}^{n_1+j,\ldots,n_k+j}, C_{\alpha_1,\ldots,\alpha_k}^{n_1+j,\ldots,n_k+j}\cap C_{\beta_1,\ldots,\beta_t}^{m_1,\ldots,m_t}=\!C_{\beta_1,\ldots,\beta_t,\alpha_1,\ldots,\alpha_k}^{m_1,\ldots,m_t,n_1+j,\ldots,n_k+j}.$$

Тогда

$$\begin{split} &\mu\bigg(\sigma_{N}^{-j}\Big(C_{\alpha_{1},\ldots,\alpha_{k}}^{n_{1},\ldots,n_{k}}\Big) \cap C_{\beta_{1},\ldots,\beta_{t}}^{m_{1},\ldots,m_{t}}\Big) = \mu\bigg(C_{\beta_{1},\ldots,\beta_{t},\alpha_{1},\ldots,\alpha_{k}}^{m_{1},\ldots,n_{k}+j}\Big) = \\ &= p_{\beta_{1}}...p_{\beta_{t}}p_{\alpha_{1}}...p_{\alpha_{k}} = \mu\bigg(C_{\alpha_{1},\ldots,\alpha_{k}}^{n_{1},\ldots,n_{k}}\Big)\mu\bigg(C_{\beta_{1},\ldots,\beta_{t}}^{m_{1},\ldots,m_{t},n_{k}+j}\Big). \end{split}$$

Критерий перемешивания

Абстрактная динамическая система $\{M, \Sigma, T, \mu\}, \mu(M) = 1$ является перемешиванием тогда и только тогда, когда

$$\forall f(x) \in L_2(M,\mu), \forall g(x) \in L_2(M,\mu)$$

справедливо, что

$$\lim_{j\to+\infty}\int_{M}f\left(T^{j}x\right)g\left(x\right)\mu\left(dx\right)=\int_{M}f\left(x\right)\mu\left(dx\right)\int_{M}g\left(x\right)\mu\left(dx\right).$$

P.S. Критерий эргодичности

Система $\{M, \Sigma, T, \mu\}, \mu(M) = 1$ является эргодической, если и только если $\forall f(x) \in L_2(M, \mu), \forall g(x) \in L_2(M, \mu)$ справедливо

$$\lim_{n\to+\infty}\frac{1}{n}\sum_{j=0}^{n-1}\int_{M}f\left(T^{j}x\right)g\left(x\right)\mu(dx)=\int_{M}f\left(x\right)\mu(dx)\int_{M}g\left(x\right)\mu(dx).$$

Доказательство критерия перемешивания

Достаточность. Полагая $f(x) = \chi_A(x), g(x) = \chi_B(x),$ получаем, что

$$\begin{split} &\int\limits_{M} f\left(T^{j}x\right) g\left(x\right) \mu \left(dx\right) = \int\limits_{M} \chi_{T^{-j}A}\left(x\right) \chi_{B}\left(x\right) \mu \left(dx\right) = \mu \Big(T^{-j}A \cap B\Big), \\ &\int\limits_{M} f\left(x\right) \mu \left(dx\right) = \int\limits_{M} \chi_{A}\left(x\right) \mu \left(dx\right) = \mu (A), \int\limits_{M} g\left(x\right) \mu \left(dx\right) = \int\limits_{M} \chi_{B}\left(x\right) \mu \left(dx\right) = \mu (B). \end{split}$$

Откуда
$$\lim_{j\to +\infty} \mu \left(T^{-j}A \cap B \right) = \mu(A)\mu(B).$$

Доказательство критерия перемешивания

Необходимость. Из определения

перемешивания следует, что соотношение
$$\lim_{j\to +\infty} \int\limits_{M} f\left(T^{j}x\right)g(x)\mu(dx) = \int\limits_{M} f\left(x\right)\mu(dx)\int\limits_{M} g(x)\mu(dx)$$
 выполняется для простых функций, а, значит, в силу его билинейности по $f\left(x\right)$ и $g(x)$ выполняется для простых функций. Пусть $\forall \epsilon > 0$. Для произвольных $f\left(x\right) \in L_{2}\left(M,\mu\right), g(x) \in L_{2}\left(M,\mu\right)$ выберем простые функции $\tilde{f}\left(x\right), \tilde{g}\left(x\right)$ так, чтобы $\left\|f\left(x\right) - \tilde{f}\left(x\right)\right\|_{L_{2}\left(M,\mu\right)} < \epsilon, \left\|g\left(x\right) - \tilde{g}\left(x\right)\right\|_{L_{2}\left(M,\mu\right)} < \epsilon.$

Доказательство критерия перемешивания

Тогда

$$\begin{split} &\left|\int_{M}f\left(T^{j}x\right)g\left(x\right)\mu(dx)-\int_{M}f\left(x\right)\mu(dx)\int_{M}g\left(x\right)\mu(dx)\right|\leq\left|\int_{M}f\left(T^{j}x\right)\left(g\left(x\right)-\tilde{g}\left(x\right)\right)\mu(dx)\right|+\\ &+\left|\int_{M}\left(f\left(T^{j}x\right)-\tilde{f}\left(T^{j}x\right)\right)\tilde{g}\left(x\right)\mu(dx)\right|+\left|\int_{M}\tilde{f}\left(T^{j}x\right)\tilde{g}\left(x\right)\mu(dx)-\int_{M}\tilde{f}\left(x\right)\mu(dx)\int_{M}\tilde{g}\left(x\right)\mu(dx)\right|+\\ &+\left|\int_{M}\tilde{f}\left(x\right)\mu(dx)\int_{M}\left(\tilde{g}\left(x\right)-g\left(x\right)\right)\mu(dx)\right|+\left|\int_{M}\left(\tilde{f}\left(x\right)-f\left(x\right)\right)\mu(dx)\int_{M}g\left(x\right)\mu(dx)\right|\leq\\ &\left|\int_{M}\tilde{f}\left(T^{j}x\right)\tilde{g}\left(x\right)\mu(dx)-\int_{M}\tilde{f}\left(x\right)\mu(dx)\int_{M}\tilde{g}\left(x\right)\mu(dx)\right|+\epsilon\left(\left\|f\left(x\right)\right\|+\left\|\tilde{g}\left(x\right)\right\|+\left\|\tilde{f}\left(x\right)\right\|+\left\|g\left(x\right)\right\|\right). \end{split}$$

Усиление критерия перемешивания

Пусть Φ полная система функций в $L_2(M,\mu)$ Абстрактная динамическая система $\{M,\Sigma,T,\mu\},\mu(M)=1$ является перемешиванием тогда и только тогда, когда $\forall f(x) \in \Phi, \forall g(x) \in \Phi$ справедливо, что

$$\lim_{j\to+\infty}\int_{M}f(T^{j}x)g(x)\mu(dx)=\int_{M}f(x)\mu(dx)\int_{M}g(x)\mu(dx).$$

Лебеговские спектры

Определение. Будем говорить, что $\{M, \Sigma, T, \mu\}, \mu(M) = 1$ абстрактная динамическая система обладает лебеговским спектром, если в $L_2(M,\mu)$ существует полный ортонормированный базис , образованный функцией $f_0(x) \equiv 1$ и функциями $\left\{f_{i,j}(x)\middle|i\in I,j\in Z\right\}$ такими, что $\forall i \in I, \forall j \in Z \ U_T f_{i,i}(x) = f_{i,i}(Tx) = f_{i,i+1}(x).$ Здесь І конечное или счетное множество.

Лебеговские спектры

Абстрактная динамическая система $\{M, \Sigma, T, \mu\}, \mu(M) = 1$, обладающая лебеговским спектром является перемешивающей системой.

Доказательство. Достаточно проверить усиленный критерий для $f=f_{i,j}, g=f_{k,r}.$ Имеем $\left(U_T^n f,g\right)=\left(f_{i,j+n},f_{k,r}\right)=0$ при $j+n\neq r.$

Задача

На окружности $S = \{z \in C ||z| = 1\}$ задано отображение $T: S \to S, Tz = z^2$. Доказать, что

- 1. мера Лебега индуцирует инвариантную меру для отображения Т;
- 2. динамическая система $\{S, \Lambda, \lambda, T\}$ является перемешиванием.